Appendix 5: Geotech Investigation north block

GEOTECHNICAL INVESTIGATION REPORT

FOR PROPOSED LAND USE CHANGE

139 Levi Road, Rolleston

Client: Four Stars Development Limited

Project Reference: LTC20264
Revision: Revision A

Date: 13 October 2020

Documentation Control:

LandTech Consulting Ltd

Postal Address:

PO Box 119

Christchurch 8013

Christchurch Office:

Unit 6, 31 Carlyle Street

Sydenham

Christchurch 8023

P. 03 390 1371 (Christchurch)

P. 09 930 9334 (Auckland)

E. info@landtech.nz

W. www.landtech.nz

Auckland Office:

17 Nils Anderson Road Whenuapai

Auckland 0618

Document Title:	Geotechnical Report for F	Proposed Land Use Change					
Address:	139 Levi Road, Rolleston	139 Levi Road, Rolleston					
Revision:	Revision A	Revision A					
Client:	Four Stars Development Limited						
Project Reference:	LTC20264	LTC20264					
Author:	Mallies	Luke Challies, Associate Geotechnical Engineer BEngTech (Civil), MEngNZ					
Authorised:	me won	Dwayne Wilson, Senior Geotechnical Engineer BEngTech (Civil), MEngSt (Geotechnical), CMEngNZ, CPEng, IntPE (NZ), Director					

REPORT DISTRIBUTION:	EPORT DISTRIBUTION:										
Recipient	Release Date	Document Type									
Four Stars Development Limited	13 October 2020	Rev A (PDF)									
Paterson Pitts Group	13 October 2020	Rev A (PDF)									

COPYRIGHT:

The information presented in this geotechnical report/document is the property of LandTech Consulting Limited. Use or copying of this document in whole or in part without the previous permission of LandTech Consulting Limited implies a breach of copyright.

Table of Contents:

1.0	Introduction	3
1.1	Project Brief	3
1.2	Scope of Works	3
2.0	Site & Project Description	4
3.0	Area Geology	5
3.1	Faults in Canterbury	5
4.0	Geotechnical Data Review	6
5.0	Field Investigation	8
6.0	Subsurface Conditions	g
6.1	Topsoil	9
6.2	Alluvial / Loess Deposits	9
6.3	River Deposits	10
6.4	Soakage	10
6.5	Site Seismicity	10
7.0	Qualitative Liquefaction Analysis	11
8.0	Geotechnical Hazard Evaluation	11
8.1	Erosion	11
8.2	Inundation	11
8.3	Subsidence	12
8.4	Falling Debris	12
8.5	Slippage	12
8.6	Contamination	12
9.0	Geotechnical Recommendations	13
9.1	Preliminary Foundation Recommendations	13
9.2	Preliminary Earthwork Recommendations	13
10.0	Future Geotechnical Involvement	13
11 0	Limitations	14

Appendices:

APPENDIX A: LandTech Site Test Plan

APPENDIX B: Environment Canterbury Well Logs

APPENDIX C: Test Pit Logs

APPENDIX D: Soakage Test Results

1.0 Introduction

1.1 Project Brief

LandTech Consulting Limited. (LandTech) were engaged by Four Stars Development Limited (the Client) to carry out a geotechnical investigation at 139 Levi Road, Rolleston (the Site). The geotechnical investigation is in relation to the proposal to change the land use within the investigated area.

The geotechnical investigation has been carried out to determine a geological model of the site, qualitatively assess the future land performance (i.e. during seismic events) and provide preliminary recommendations for site development.

This geotechnical report summarises the findings of our investigation and assessment. It includes a preliminary geotechnical assessment of the site, and may be used to support the land use change application to the Selwyn District Council (SDC). This report is not intended to support the subdivision application, individual house design or corresponding Building Consents, and further testing will be needed to address these applications.

1.2 Scope of Works

The geotechnical investigation for the proposed development included the following:

- Review of the New Zealand Geotechnical Database (NZGD) and other relevant geological/ geotechnical data;
- Detailed walkover inspection;
- Intrusive field investigation (i.e. test pits and insitu strength testing);
- · Collation of field data and drafting;
- Geotechnical assessment;
- Provision of preliminary recommendations for development; and
- Preparation of this geotechnical report, detailing all of the above.

2.0 Site & Project Description

The investigation site is located near the corner of Levi Road and Lincoln Rolleston Road in Rolleston. The site is indicated in Figure 1 below, and is located approximately 1.1km to the south east of the Rolleston Township. The site comprises part of 139 Levi Road, legally described as Lot 2 DP416195 and Lot 2 DP 322710, and covers a total area of 30.43ha (sourced from https://mapviewer.canterburymaps.govt.nz/ on 11 October 2020).

Due the zoning of a decibel restriction associated with the Christchurch Airport extending into the eastern portion of the property, only the northern and western portion of the property has been investigated for the Land Use Change Application. The location of the investigated area and approximate location of the decibel restrictions is shown on the attached drawings LTC20264/1.

Figure 1: Aerial photograph of investigation site (source: https://mapviewer.canterburymaps.govt.nz/, accessed 11 September 2020)

The property is generally flat and is currently used for horse training, and a stables and associate building are located in the northern portion of the site near Levi Road, along with a dwelling in the western corner. A training oval occupies the centre of the property, along with several tracks providing accesses to the paddocks. The land is essentially flat with no obvious changes in elevations and undulations.

3.0 Area Geology

Reference has been made to the *New Zealand Geology Web Map*, GNS Science, http://data.gns.cri.nz/geology/, website accessed 11 September 2020. The reviewed sources indicate that the site is underlain by Holocene Aged River Deposits. These materials generally comprise rounded to subrounded gravel and cobble sized particles within a matrix of silt and sand, deposited via the lateral and vertical migration of the past and present river systems, from the Southern Alps, out toward the east coast. Due to the depositional environment, the geotechnical characteristics of this material can be variable.

The characteristics of the River Deposits can vary widely over small distances. These variances include vertical and horizontal differences in both soil particle size distribution and consolidation. It is discussed above that these materials generally comprise gravel and cobbles; however, interbedded horizons of fine to coarse grained sand, silt and clay can also exist. They can also be capped by loessal soils or finer grained silts and sands.

3.1 Faults in Canterbury

For the purpose of our investigation we have referred to a Selwyn District earthquake fault report compiled by GNS Science and Environment Canterbury (ECan). The referenced report is titled:

 General distribution and characteristics of active faults and folds in the Selwyn District, North Canterbury, GNS Science and Environment Canterbury, dated July 2013.

The reference report gives a general outline of the nature of geologically active areas within the Selwyn District. Figure 6 in the referenced report indicates that the investigation site is located within 10km of the mapped Greendale Fault, to the northwest.

Figure 2: shows excerpt from figure A.1e of the referenced report (red line is a definite or likely fault).

The Greendale Fault and associated blind faults of the Darfield earthquake sequence have been defined by GNS Science via field inspection, aerial photograph interpretation and regional geologic mapping. The reference source indicates that these faults were unknown prior to 2010 and the ages of previous ruptures are also not known. This leave the potential for further unmapped faults to exist within the locality of the investigation site.

4.0 Geotechnical Data Review

Reference has been made to sources including the New Zealand Geotechnical Database (NZGD): http://www.nzgd.org.nz/ and Environment Canterbury (ECan): http://canterburymaps.govt.nz/ (accessed 11 September 2020). The following text summaries the findings of our data review:

- The MBIE Residential Foundation Technical Category Map indicates the site is located within an area designated as N/A Rural and Unmapped. This indicates that normal consenting procedures apply.
- According to Canterbury Maps there are a series of Ecan wells within close proximity to the site.
 The associated bore logs for the following ECan wells have been reviewed, and are attached within Appendix B:
 - M36/0328, drilled to 28.6m and located with the neighbouring property to the south of the site
 at 232 Lincoln Rolleston Rd site. The borelog for the well shows earth and clay to 1.2m depth
 underlain by claybound to rough sandy gravel to the drill depth. Water levels from 1989,
 indicate a groundwater level of between 13.5m and 14.3m below ground level.
 - M36/8287, drilled to 46.1m and located at the northeastern corner of the site. The borelog for the well shows topsoil to 0.3m depth underlain by gravels to the drill depth. Ground water levels are indicated at 15.3m below ground level at the time of drilling.
 - M36/5292, drilled to 52.0m and located 80m to the south of the site near 294 Lincoln Rolleston Road. The borelog for the well shows topsoil and clay to 0.3m depth underlain by sandy gravel or claybound gravel to the drill depth. Initial groundwater levels are indicated at 12.2m below ground level at the time of drilling.
- According to the Environment Canterbury Soil Type map, the site is mapped as primarily Typic
 Immature Plallic Soils with a deep silty loam, while the northern corner of the site is mapped as a
 Typic Immature Plallic Soils having a moderately deep silty loam. Both soil types are described
 as having moderate over slow permeability.
- Eastern Canterbury Liquefaction susceptibility (2012), shows the site is located within an area were *Liquefaction damage is unlikely*.

A review of historical photograph of the site from between 1940 and 2004 has been carried out on information available from Canterbury Maps. Imagery from 1940 to 1944 (shown overleaf in Figure 3), shows evidence of paleo river channels near the northern corner of the site. It is therefore possible additional channels are present within the investigation site. Some historic infilling of these paleo channels could have taken place as part of farming activities. However, our investigation found limited evidence of filling having taken place across the general subdivision site.

Figure 3: Aerial photograph of investigation site (source: https://mapviewer.canterburymaps.govt.nz/, accessed 11 September 2020)

5.0 Field Investigation

Our field investigation took place on 21 September 2020 and comprised the following components:

- Detailed walkover inspection; and
- Excavation of Six test pits (TP01 TP06) and associated Scala penetrometer testing; and
- Soakage testing (ST01) within TP06.

Each test was positioned evenly across the site away from infrastructure and animals, and test locations are shown on the LandTech *Site Test Plan*, Drawing No. LTC20264/ 1 (attached in Appendix A). The positions have been located via a hand-held GPS without survey control and are therefore approximate only.

The soil conditions encountered within the hand augerholes and test pits were logged by LandTech field staff in accordance with New Zealand Geotechnical Society *Guideline for the Description of Soil and Rock for Engineering Purposes* (2005). The test pit logs and corresponding photographs are attached in Appendix B, while the hand augerhole logs are within Appendix C.

The undrained shear strength of the fine-grained soils was recorded where applicable using a Geovane hand held shear vane in accordance with the NZGS *Guideline for Hand Held Shear Vane Test*, published August 2001. The peak and remoulded vane shear strength values have been factored in terms of BS1377.

Dynamic Cone (Scala) Penetrometer testing was carried out near the test pit locations to determine a soil density profile. Testing procedures were in accordance with NZS 4402:1988, Test 6.5.2, *Dynamic Cone Penetrometer*. The test results are shown on test pit logs.

Soakage testing was carried out in general accordance with the Auckland City Soakage Design Manual, worksheet W1: Falling-head Percolation Test. That being the change in water depth against time was recorded. A slight modification for the diameter of the holes has been made with a simple area conversion from a rectangle to a circle to give an equivalent diameter.

6.0 Subsurface Conditions

The sites subsurface conditions generally comprised a surficial layer of topsoil underlain by a sequence of Alluvial / Loess deposits followed by River Deposits. This is consistent with the geology described in Section 3.0 (Area Geology). A subsurface summary is given in Table 2 and detailed descriptions are given in the subsequent sections.

Table 1: Subsurface summary

Test pit ID	Test Pit Depth	Topsoil Depth	Soil Depth	Scala Depth
TP01	3.2	0.3	2.8	2.4
TP02	3.2	0.3	2.9	2.5
TP03	2.8	0.3	1.2	1.3
TP04	2.6	0.3	1.5	1.6
TP05	3.0	0.3	1.4	1.4
TP06	2.8	0.2	1.4	1.4

Table notes:

Measurements are in metres (m) below present ground level

Scala penetrometer refusal considered when an excess of 20 blows /100mm penetration occurs

6.1 Topsoil

Topsoil was encountered from the surface at all test locations and ranged between the depths of 0.2m and 0.3m below present ground level (bpgl). This mostly comprised dark brown silt with minor fractions of fine to coarse grained sand. The topsoil is not considered suitable for the support of building foundations.

6.2 Alluvial / Loess Deposits

Soil deposits comprising either alluvial soils or loessal soils where present above the river deposits at depth. The depth of these soils ranged from between 1.2m (TP03) and 2.9m (TP02) below ground level, and typically comprised a moist fine sandy silt. Typically, the deeper deposits of soil where encountered along the northern boundary towards the northwestern corner.

Scala penetrometer testing within the soils generally ranged from 2 and 5 Blows / 100mm penetration. Higher blow counts at depth are due to contact with the underlying gravels.

Where possible shear vane testing was carried out in the silt materials, peak shear vane testing ranged from between 107kPa and 187+kPa indicating a very stiff soil.

6.3 River Deposits

River Deposits were encountered below the surficial layer of sandy silts from between 1.2m (TP03) and 2.9m (TP02) to the termination depth of all test locations (TP01 – TP06). The River Deposits generally comprised fine to coarse sandy, fine to coarse subrounded gravel. The gravel deposits where described as moist, while larger cobbles were also encountered.

Scala penetrometer testing was unable to penetrate the gravels with refusal typically being achieved in contact with the underlying gravels, indicative of dense packing.

6.4 Soakage

The soakage capacity of the gravel was tested within TP05; the location of the test pits are shown on the LandTech *Site Test Plan*, Drawing No. LTC20264/ 1 (attached in Appendix A). The results of the soakage testing are attached in Appendix C.

The results of the calculated average soakage rates are shown in Table 3 below:

Table 2: Average soakage rates

	SP01 / TP06
Average Soak Rate (mm/hour)	368
Percolation Rate (L/m²/min)	10

Following the testing silt was loaded in the base to a thickness of around 0.2m thick which likely impeded the flow. While the Test pit was being filled the maximum height the above the base the water level rose to was 0.5m, at a flow rate of 833L/min or 520L/m²/min. This shows that infiltration from the side walls contributes a considerable amount to the drainage.

Based on the variable subsurface conditions throughout this site (i.e. depth of soil), we recommend additional soakage testing be carried out in the location of proposed soakage basins to determine more representative percolation rates to design from.

6.5 Site Seismicity

For the purpose of applying requirements of NZS 1170.5:2004 the site subsoil is Class D – Deep or Soft Soil Site. This classification is based on depths of soil exceeding the limits of Table 3.2 of the reference standard. seismic hazard factor (Z) for the site is 0.3 as per the standard.

7.0 Qualitative Liquefaction Analysis

The MBIE & New Zealand Geotechnical Society Inc. report titled *Earthquake geotechnical engineering* practice, Module 3: Identification, assessment and mitigation of liquefaction hazards (2016) explains that the evaluation of the geologic susceptibility of liquefaction is a key aspect in the evaluation of liquefaction potential at a given site.

Based on our desktop study and field investigation, we have established that the site is generally underlain by Holocene Age horizons of tightly packed gravel (i.e. River Deposits) with average ground water levels of around 13.0m. In addition to this ECan (2012) liquefaction susceptibility maps has indicated that the site is unlikely to be damaged via earthquake induced liquefaction.

The region comprises a rural/unmapped Residential Foundation Technical Category (based on MBIE); however, is considered an area that is not likely to be susceptible to liquefaction induced damage. This is based on the geology underlying the site (i.e. Holocene Aged River Deposits), the previously referenced reports and maps, and our qualitative liquefaction assessment.

Based on our assessment of the investigation site, we are categorising existing property as Technical Category 1 (TC1) with damaging liquefaction unlikely and consider the site suitable for residential development from a geotechnical perspective.

8.0 Geotechnical Hazard Evaluation

Section 106 of the Resource Management Act 1991 outlines hazards that must be assessed when a territorial authority considers subdivision of land. This section outlines our evaluation of possible geotechnical hazards associated with this site. Based on the results of our investigation and assessment, we consider this site suitable for land use change to residential zoning from a geotechnical perspective.

8.1 Erosion

The surface of the property is near level to undulating with no general contour/runoff direction. During our field investigation, we did not observe any obvious signs of erosion from concentrated surface runoff. Furthermore, we do not consider the proposed site development will increase the erosion potential provided stormwater is disposed of in a controlled manner subject to usual Council Consenting procedures.

8.2 Inundation

Assessment for inundation from flooding is not a part of the scope of this report and therefore has not been fully assessed. A basic review of online mapping available from CanterburyMaps has been carried out and no information for the site was evident. If required an assessment should be carried out by suitably experienced consultant.

8.3 Subsidence

It is discussed in previous sections of this report, liquefaction is not likely to occur within the investigation site. This is due to the shallow depth to gravel and gravelly sand layers (between 1.2m and 2.9m below the site) and the ECan well logs indicating that groundwater in the area is at an average of around 13.0m below ground level.

This means that corresponding liquefaction induced subsidence is unlikely, as per the site performance through the CES. Foundation settlements are also considered unlikely due to the dense nature of the subsoils. This is provided in our recommendations given further herein are followed regarding further investigation, foundation design and construction.

8.4 Falling Debris

No tall standing slopes exist in the vicinity of the investigation site, therefore falling debris hazard is non-existent.

8.5 Slippage

Due to the site being near level to gently undulating, it's removed location from any major waterways, and inferred non-liquefiable nature of the underlying subsoils, slippage via liquefaction-induced lateral spreading is not considered to affect the subdivision site. No other geotechnical mechanism of slippage was noted during out field investigation or from our assessment.

8.6 Contamination

Whilst not a requirement of Section 106 of the RMA 1991, soil contamination is a potential geotechnical hazard that should be considered when making Consent applications to territorial authorities where ground disturbance works are proposed (i.e. foundation excavations etc.). This indicates no HAIL activities are recorded to have taken place at the site, according to the register. This does not confirm the site has no soil contamination, but only indicates the Regional Council does not have records of potentially hazardous activities taking place the site that could lead to soil contamination.

9.0 Geotechnical Recommendations

It is stated in the previous sections that the site has been classified as TC1; based on our desktop study, the underlying geology and qualitative liquefaction assessment. Following our assessment, we consider the site suitable land use change to residential zoning from a geotechnical perspective. Our recommendations with regard to site development and preliminary foundation design follow subsequently.

9.1 Preliminary Foundation Recommendations

Due to the low risk of liquefaction at the subdivision we have classified the investigation site as TC1, and conclude the River Deposits beneath any surficial soils meet the criteria for "good ground" as defined by NZS3604:2011. Some areas of weak upper surficial soils may require foundations to be subject to specific engineering design due to low bearing capacities. Alternatively, earthworks during subdivision may compact any weak upper layers so standard foundations can be utilised without engineering design input. The extent of any weak upper soils can be determined with further shallow soil testing as part of the subdivision design/consenting stage.

9.2 Preliminary Earthwork Recommendations

All proposed earthworks will need to be carried out to the requirements of NZS 4431:1989, 'Code of Practice for Earthfilling for Residential Development'. All unsuitable materials (vegetation, organic or detritus material, and organic rich topsoil etc.) should be stripped from any areas of earthworks and stockpiled well clear of operations or carted from the site.

10.0 Future Geotechnical Involvement

Should the land use change be approved and a subdivision plan be made, a more detailed geotechnical investigation will be required to more accurately identify areas of deep alluvial soils and provided further geotechnical recommendations for the subdivision development.

Dependent on the extent of earthworks during the subdivision stage and involvement from a geoprofessional to observe areas of stripped ground and fill compaction, additional lot specific shallow soil testing may be required. The results of which may supersede our preliminary foundation recommendations if the test results differ to our area wide investigation. However, the risk of differing ground conditions is considered to be low, due to the relatively uniform presence of dense river gravels throughout the general Rolleston area. Potential variations could be from deeper areas of surficial alluvial soils or localised uncontrolled filling in the past.

11.0 Limitations

This geotechnical report has been prepared for our Client, Four Stars Investment Limited, for the purposes of supporting a Land Use Change application to the Selwyn District Council. This report shall not be extrapolated for other nearby sites or used for any other purposes without the express approval of LandTech and their Client.

This report has been based on the results of tests at point locations; therefore, subsurface conditions could vary away from the assumed geotechnical model. Should exposed soil conditions vary from those described herein we request to be informed to determine the continued applicability of our recommendations. We have attempted to conduct a thorough investigation of soil types across the site, within the agreed scope of works. However, variations still may exist as soils can vary naturally and due to previous human activities, which LandTech have no control over and should not be held accountable for.

The geotechnical investigation was confined to geotechnical aspects of the site only and did not involve the assessment for environmental contaminants. In addition, our investigation and analyses have also not taken into account possible fault rupture that may cause deformations and displacements of the ground directly below the site. This type of assessment is outside of the scope of our geotechnical engagement.

END OF REPORT

APPENDIX A LandTech Site Test Plan

APPENDIX B Environment Canterbury Well logs

Borelog for well M36/0328

Grid Reference (NZTM): 1552007 mE, 5172190 mN

Location Accuracy: 50 - 300m

Ground Level Altitude: 42.6 m +MSD Accuracy: < 0.5 m

Driller: McMillan Drilling Ltd Drill Method: Cable Tool

Borelog Depth: 28.6 m Drill Date: 20-Aug-1980

Formation

Scale(m)	Water Level	Depth(m)		Full Drillers Description	Formation Code
				Earth and clay	SP
5		1.20m _ 1.20m	000000 00000 00000 00000 00000	Earth and clay Claybound gravel	SP SP-RI
	13.48 ‡ 14.34	14.00m _ 14.00m	00000 00000 00000 00000 00000 00000 0000	Claybound gravel Rough sandy gravel	SP-RI RI
20					
Ц		23.50m _ 23.50m	0::0::0::	Rough sandy gravel Sandy claybound gravel	RI BR?
25		24.70m _ 24.70m	20.22.20	Sandy claybound gravel	BR?
		24.70m	00	Sandy claybound gravel, less clay, more sand	BR?
H		26.79m _ 26.79m	<u> </u>	Sandy claybound gravel, less clay, more sand	BR?
		28.60m		Free gravel and sand	BR?

Borelog for well M36/8287
Grid Reference (NZTM): 1551585 mE, 5172834 mN
Location Accuracy: 2 - 15m
Ground Level Altitude: 45.9 m +MSD Accuracy: < 0.5 m
Driller: Dynes Road Drilling
Drill Method: Rotary/Percussion
Borelog Depth: 46.1 m Drill Date: 15-Jan-2007

5010	Water	Drill Date: 15-Jan-2		Formation
Scale(m)	Level Depth(m)	-9-0-0 0 1	Full Drillers Description top soil	Code
	0.30m	000000000	top soil med rounded gravel	
П				
Н		000000000		
		000000000		
П		000000000		
Н				
5		000000000		
Ĭ		00000000		
H		1000000000		
		000000000		
		000000000		
H		5000000000		
		500000000		
		1000000000		
10		000000000		
		000000000 000000000 000000000 00000000		
Н	12.00m 12.00m	0==0==0==	med rounded gravel	
		==0==0	small-med rounded gravel with silt	
		0==0==0==		
Н		0=0=0=0		
15		==0==0==0		
		0==0==0		
Н		0=0=0=		
		=0=0=0		
		::0::0::0		
H	18.00m 18.00m	0==0==0==	small-med rounded gravel with silt	
		==0==0==0	firm silt bound gravel (harder drilling silt bound, new detail added)	
		0==0==0		
20		0=0=0=		
Ц		=0=0=0		
		0==0==0		
H		0=0=0=		
Ш		20:00:00		
		0==0==0		
Н		0==0==0==		
25	25.00m	=0==0==0	firm silt bound gravel (harder drilling	
	25.00m	0=0=0=0	silt bound, new detail added) small rounded gravel with silt (28m	
Ī		0==0==0==	original depth)	
		0==0==0==0		
		= 0 == 0 == 0		
	28.20m 28.20m	8=6=8=	small rounded gravel with silt (28m	
H	29.00m 29.00m		original depth) small-medium rounded gravel 30% silt	
30	20.00111	000000000	(rough gravel firmer drilling, original strata GR only)	
30 1		000000000	small-medium rounded gravel 30% silt (rough gravel firmer drilling, original strata GR only)	
Н	31.00m 31.00m	000000000	firmer gravel less water (swl -22m at	
	U1.00ill	00000000	29m depth - new strata added) firmer gravel less water (swl -22m at 29m depth - new strata added)	
П		000000000	loose med gravel (new strata added)	
Н		000000000		
	34.00m	000000000		
П	34.00m	0:.0::0:.	loose med gravel (new strata added) hard drilling with sand water sealed	
35		0::0::0:	(med gravel with firm silt - original strata GRSI)	
	35.70m 35.70m	60000000	hard drilling with sand water sealed	
	36.80m	000000000	(med gravel with firm silt - original strata GRSI)	
	36.80m		loose gravel water up (swl = -25m, new strata added)	
	38.00m	1:0::0::0	loose gravel water up (swl = -25m, new strata added)	
	38.00m	000000000	some sand etc (new strata added) some sand etc (new strata added)	
		000000000	med rounded gravel water up to 17m (loose gravel (swl = -18m) - original	
40		000000000000000000000000000000000000000	strata detail)	
		000000000		
Н		000000000		
	42.00m	000000000		
П	42.00m	O==Q==O==	med rounded gravel water up to 17m (loose gravel (swl = -18m) - original	
Н	43.00m 43.00m	== 0 == 0 == 0	strata detail) water sealed off silt bound gravel (new	
	[00000000000000000000000000000000000000	strata added) water sealed off silt bound gravel (new	
П		22200000000 20000000000000000000000000	strata added) water back loose rounded gravel	
45		00000000000000000000000000000000000000	(loose small rounded gravel original strata detail)	
	46.00m	000000000000 0000000000000000000000000		
-			-	1

Borelog for well M36/5292

Grid Reference (NZTM): 1551672 mE, 5172222 mN

Location Accuracy: 2 - 15m

Ground Level Altitude: 44.4 m +MSD Accuracy: < 2.5 m

Driller: Smiths Welldrilling Drill Method: Rotary Rig

Borelog Depth: 52.0 m Drill Date: 15-Sep-1997

Scale(m)	Water Level	Depth(m)		Full Drillers Description	Formation Code
		0.25m	0.0.0.0	Soil	SP
Ц			0.00	Sandy gravel	SP
			bod		
Н		4.50m			
			000000	Claybound gravel	RI
Н			00000		
			200		
П			500000		
10			000000		
			000000		
H			00000		
		14.00m	2020		
H			000.	Claybound sandy gravel	RI
	16.6 V		.0::0::0		
	16.6		0::0::0:		
			<u>.0.0.0</u>		
21			0::0::0:		
		22.00m _	50.30.00	Sandy gravel	BR?
Н					
Ц		25.00m _	5		
			000000	Claybound gravel	LI
Н			00000		
			202200		
Н			000000		
31			000000		
, I		32.00m _	802080	Candy assured	LI
Щ			0.0.0.0	Sandy gravel	L
		35.00m			
H			<u>ó∷ò∵ó∴</u>	Claybound sandy gravel	LI
			0::0::0:		
į į					
			<u>o∵o∵o∵</u>		
			.0:.0:.0		
42			<u>ō::ō::ō:</u> ,		
			00.0		
Н					
			<u> </u>		
П			0::0::0:		
Ц		48.00m _	0::0::0:		
		_	o <u>∵o∷o::</u>	Free sandy gravel	LI
Н		ш	[::O::O.:O.]		
		52.00m	₽ ;;0;:0;:q		
11		02.00M	*f 1** \text{\tin}}\text{\tin}\text{\tin\text{\tin}\text{\text{\text{\ti}\tint{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\ti}\text{\text{\text{\text{\text{\text{\texi}\tint{\text{\texit{\tin\tint{\text{\texit{\text{\texi{\texi{\texi{\texit{\text{\ti}\t		I

APPENDIX C Test Pit Logs

LandTech Consulting Ltd. (Christchurch): Unit 6, 31 Carlyle Street, Sydenham LandTech

Phone: (03) 390 1371 Pho

testing in Scala

4.5

Email: info@landtech.nz Website:

-4.5 -4.6 -4.7 -4.8 -4.9

Client: Four Stars Development Ltd
Project: Geotechnical Investigation for Proposed Land Use Change
Address: 139 Levi Road, Rolleston

Sheet No.

Test Pit No.

TP02

Drill Type: Drilled By: Logged By: Shear Vane No: 6T Hydraulic Excavator Project No: LTC20264 M Gunn BM Contracting NZTM2000 E1551545 N5172856 Coordinates: 2255 Date Started: 21-Sep-20 Ground Conditions: Near level, grass Calibration Factor: 1.333 Date Finished: 21-Sep-20 Groundwater Level (m): Not Encountered (21-Sep-30) Calibration Date: 16-Mar-20

Date Fi	HISHE	eu.	21-Sep-20 Groundwater Level (m): Not Encoul	ilereu	(21-36	sp-30)	Calibration L	Jale.		16	-Mar-20
,		3		Groundwater Level (m)			In-situ Fie	ld Testing			
Stratigraphy	Depth (m)	Graphic Log	Soil description in accordance with Guideline for the Field Classification and	r Lev	(E)	Shear Strength (kPa)		ynamic Co	ne Penetro	meter	
tratig	Dept	raph	Description of Soil and Rock for Engineering Purposes, NZ Geotechnical Society Inc. 2005	hwate	Depth (m)				Scala	a Blow Co	unt /
ώ,	_	g		Juno	-	Peak:	Depth (m)	Count		100mm	
				Ē		0	leg	Blow	0 5	10 1	5 20
	<	$\langle \rangle \langle \rangle$	SILT, some fine sand, dark brown, stiff, moist, non-plastic, trace organics and	i			-0.1	3			
T.SOIL		$\times \times$	rootlets [TOPSOIL]				-0.2	3	II I		
-	T	$\times \times$			_		-0.3	5			
	×		Fine sandy SILT, light brown, stiff, moist, non-plastic		_		-0.4	4			
o).5 ×	< × × ×	[ALLUVIAL DEPOSITS / LOESS]		0.5		-0.5	4	II I		
	×	< × × ×					-0.6	3			
	×	<					-0.7	3	II I		
	×	< × × ×					-0.8	3	$\parallel 1 \parallel$		
	\Box	(-0.9	2	$\ I \ $		
1	1.0 ×	< × × ×			1.0		-1.0	2			
	×	× × ×					-1.1	2	HI		
	×	< × × ×]	-1.2	3			
	×	· × × ×		_			-1.3	2			
TS		. × × ×		3p-20	l _]	-1.4	3			
ALLUVIAL DEPOSITS	1.5 ×	:		21-Se	1.5		-1.5	2			
E.	_	. × × ×		red (3	_		-1.6	3			
IVIAL	4	: × × ×		unte	l _	1	-1.7	4	1		
ALLU		:		Not Encountered (21-Sep-20)	_		-1.8	5	}		
		: × × ×		Not	_		-1.9	3			
2	2.0 *	< × × ×			2.0		-2.0	3	I →		
		× × ×		-	_		-2.1	3			
		(SILT, minor fine sand, light brown, mottled orange, stiff, moist, non-plastic		_		-2.2	2	1		
		× × ×			_		-2.3	3	1		
	-	<			_	1	-2.4 -2.5	3	•		
2	2.5 ×	< × × ×			2.5		-2.6	J	I I →		
	×	< × × ×			_		-2.7				
	-	< × × ×			_	1	-2.8				
	-	< × × ×			_		-2.9				
	3.0	ÂÎ.	Fine sandy, fine to coarse, subrounded to round GRAVEL, brown, very dense, moist	1	3.0		-3.0				
RIVER D.			[RIVER DEPOSITS]		-		-3.1				
듄	1	779			_	1	-3.2				
			End of Test Pit 3.2m]	-3.3				
			[TARGET DEPTH]				-3.4				
3	3.5			1	3.5		-3.5				
	_]			1			-3.6				
	\perp				_]	-3.7				
	4				l _		-3.8				
	4			1	l _	1	-3.9				
4	1.0			1	4.0		-4.0				
	4				_		-4.1				
	\dashv				-		-4.2				
	\dashv			1	-	1	-4.3				
	\exists			1	l .—	1	-4.4				
4	1.5				4.5	-	-4.5 -4.6				-
	\dashv				-	1	-4.6 -4.7				
	\dashv			1	-	1	-4.8				
	\dashv				-	1	-4.9				
					5.0	1	-5.0				
+	5.0			T	5.0	In-situ field testing in accordance with		ndards;			
						Scala Penetrometer Testing: NZS 44				r	
丄				1		Shear Vane Testing: Guideline for Ha	ind Held Shear Va	ne Test, NZGS,	August 2001		
			LandTech Consulting Ltd. (Christchurch): Unit 6, 31 Carlyle Street, Sydenham LandTech Consulting Ltd. (Auckland): 17 Nils Andersen Road, Whenuapai			8) 390 1371 9) 930 9334 V	Email: info@ Vebsite: www				

Address: 139 Levi Road, Rolleston

Test Pit No. TP03

Sheet No. 1 of 1

Drill Type: Drilled By: Logged By: Shear Vane No: 6T Hydraulic Excavator Project No: LTC20264 M Gunn BM Contracting NZTM2000 E1551724 N5172860 Coordinates: 2255 Date Started: 21-Sep-20 Ground Conditions: Near level, grass Calibration Factor: 1.333 Date Finished: 21-Sep-20 Groundwater Level (m): Not Encountered (21-Sep-30) Calibration Date: 16-Mar-20

Section Sect	Date	FINIS	ieu.	21-Sep-20 Groundwater Lever (III): Not Encour	ilereu	(21-36	:p-30)	Cambration	Jale.			6-Mar-20
Sult some fine searly, dark brown, stiff, moist, non-plastic, trace organics and codes; [TroPoint 1 0 0 0 0 0 0 0 0 0	^		0		/el (m)			In-situ Fie	eld Testing			
SILT, some fine sand, dark brown, stiff, moist, non-plastic, value organics and codes (In-PSOIL)	raphy	(m) r	o Log		r Lev	(m) r	Shear Strength (kPa)	Ι	Ovnamic Cor	ne Penetro	meter	
SILT, some fine sand, dark brown, stiff, moist, non-plastic, value organics and codes (In-PSOIL)	tratig	Jepth	raphi		wate	Jepth				Scala	Blow C	
SILT, some fine sand, dark brown, stiff, moist, non-plastic, value organics and codes (In-PSOIL)	Ś		g		puno			f f	8		100mm	
Section Sect					Ġ		150 20) De	Blow	0 5	10	15 20
Fine sandy SLT, yellowish light brown, very stiff, most, non-plastic 5.5				SILT, some fine sand, dark brown, stiff, moist, non-plastic, trace organics and				-0.1				
Fine sandy SLT, yellowish light brown, very stiff, most, non-plastic 5.5	SOII		$\times \times$	rootlets [TOPSOIL]		-		-0.2	3	l t		
Fine surface same, sub rounded GRAVEL, minor sit, brown, dense, moist 15 1.5	Η.		$\times \times$				187+ UTP	-0.3	3	l i		
10 10 10 10 10 10 10 10					1		•	-0.4	4	1		
Fine to coarse sandly, sub rounded GRAVEL, minor slit, brown, dense, moist (RIVER DEPOSITS) 1.2 1.2 1.2 1.3 1.4 1.1.5 1.1.6 1.1.6 1.1.7 1.1.8 1.1.9 1	SS	0.5		[ALLUVIAL DEPOSITS / LOESS]		0.5		-0.5	3			
Fine to coarse sandy, sub rounded GRAVEL, minor sit, brown, dense, molet (RIVER DEPOSITS) 1.2 1.2 1.3 2.5	LOE	0.0						-0.6	3			
Fine to coarse sandly, sub rounded GRAVEL, minor slit, brown, dense, moist (RIVER DEPOSITS) 1.2 1.2 1.2 1.3 1.4 1.1.5 1.1.6 1.1.6 1.1.7 1.1.8 1.1.9 1	TS/							-0.7	3	l i		
Fire to coarse sandy, sub rounded GRAVEL, minor sit, brown, dense, most of RIVER DEPOSITS 1.12 1.2 1.2 1.3 1.4 1.15 1.16 1.16 1.17 1.18 1.19	POS							-0.8	3	l i		
Fire to coarse sandy, sub rounded GRAVEL, minor sit, brown, dense, most of RIVER DEPOSITS 1.12 1.2 1.2 1.3 1.4 1.15 1.16 1.16 1.17 1.18 1.19	- DE							-0.9	4			
Fire to coarse sandy, sub rounded GRAVEL, minor sit, brown, dense, most of RIVER DEPOSITS 1.12 1.2 1.2 1.3 1.4 1.15 1.16 1.16 1.17 1.18 1.19	JVIAI	1.0				1.0		-1.0	3			
Fine to coarse sandly, sub rounded GRAVEL, minor slit, brown, dense, moist (RIVER DEPOSITS) 1.2 1.2 1.2 1.3 1.4 1.1.5 1.1.6 1.1.6 1.1.7 1.1.8 1.1.9 1	ALLI				1			-1.1	9			
1-18 1-19 2-0 2-)-20)			-1.2	12		1	
1-18 1-19 2-0 2-			MI	Fine to coarse sandy, sub rounded GRAVEL, minor silt, brown, dense, moist	1-Sep	_		-1.3	25 ⁺		•	_
1-18 1-19 2-0 2-				[HIVER DEPOSITS]	d (21			-1.4				
1.8		1.5	44	trace subrounded to round boulders	ntere	1.5		-1.5				
1.8					ncon			-1.6				
1.8			<i>5</i> .		P to E			-1.7				
23 24 25 25 26 26 27 28 29 30 30 31 31 32 33 34 35 35 35 36 36 37 38 39 40 40 40 41 41 42 43 45 45 46 47 48					-			-1.8				
23 24 25 25 26 26 27 28 29 30 30 31 31 32 33 34 35 35 35 36 36 37 38 39 40 40 40 41 41 42 43 45 45 46 47 48	SITS							-1.9				
23 24 25 25 26 26 27 28 29 30 30 31 31 32 33 34 35 35 35 36 36 37 38 39 40 40 40 41 41 42 43 45 45 46 47 48	EPO	2.0	240-44			2.0		-2.0				
23 24 25 25 26 26 27 28 29 30 30 31 31 32 33 34 35 35 35 36 36 37 38 39 40 40 40 41 41 42 43 45 45 46 47 48	IR DI							-2.1				
2.4	RIVE		20/1					-2.2				
25			29 V					-2.3				
End of Test Pit 2.8m [TARGET DEPTH] 3.0 3.1 3.1 3.2 3.3 3.4 3.5 3.5 3.6 3.7 3.8 3.9 4.0 4.0 4.1 4.2 4.3 4.4 4.5 4.5 4.6 4.7 4.8						_		-2.4				
End of Test Pit 2.8m [TARGET DEPTH] 3.0		2.5				2.5		-2.5				
End of Test Pit 2.8m [TARGET DEPTH] 3.0						_						
End of Test Pit 2.8m [TARGET DEPTH] 3.0 -2.9 -3.0 -3.1 -3.1 -3.2 -3.3 -3.4 -3.5 -3.6 -3.7 -3.8 -3.9 -4.0 -4.0 -4.1 -4.1 -4.2 -4.3 -4.4 -4.5 -4.6 -4.7 -4.8		_	100			_						
3.0 [TARGET DEPTH] 3.0 3.0 3.0 3.1 3.2 3.3 3.4 3.5 3.5 3.6 3.6 3.7 3.8 3.9 4.0 4.0 4.1 4.1 4.1 4.2 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.7 4.8		_	A)	End of Toot Dit 2.0m	-	_						
3.0		_				_						
3.5 3.5 3.6 3.7 3.8 3.9 4.0 4.0 4.1 4.2 4.3 4.4 4.5 4.5 4.6 4.7 4.8		3.0		[IANGET DEF III]		3.0				I	-	
3.5 3.5 3.5 3.6 3.7 3.8 3.9 4.0 4.0 4.1 4.2 4.3 4.4 4.5 4.5 4.6 4.7 4.8		_				_						
3.5 3.5 3.6 3.7 3.8 3.9 4.0 4.0 4.1 4.2 4.3 4.4 4.5 4.5 4.6 4.7 4.7 4.8		_				_						
3.5		_			1	-						
3.5 		_			1							
4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.1 4.2 4.3 4.4 4.5 4.5 4.6 4.6 4.7 4.8		3.5			1	3.5					+	+
4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.1 4.2 4.3 4.4 4.5 4.5 4.6 4.6 4.7 4.8		-			1	-						
4.0 4.0 4.0 4.0 4.0 4.1 4.2 4.3 4.4 4.5 4.5 4.6 4.6 4.7 4.8		-			1	-						
4.0 4.0 -4.0 -4.1 -4.2 -4.3 -4.4 -4.5 -4.5 -4.6 -4.7 -4.8					1	-						
4.5 -4.6 -4.7 -4.8		4 n			1	4 0						
4.5 4.5 4.5 		+.∪			1	4.0						
4.5 					1	-						
4.5 -4.6 -4.7 -4.8					1	-	1	-4.3				
-4.6 -4.7 -4.8					1	l —		-4.4				
-4.6 -4.7 -4.8		4.5			1	4.5		-4.5				
					1			-4.6				
					1			-4.7				
					1			-4.8				
					1			-4.9				
5.0 -5.0		5.0			L	5.0						
In-situ field testing in accordance with the following Standards: Scota Reportements: Testion: N/3-4400-1009, Test 6-5-0 Purposition Coop Prodeterments:					1					Ponetee		
Scala Penetrometer Testing: NZS 4402:1988, Test 6.5.2, Dynamic Cone Penetrometer Shear Vane Testing: Guideline for Hand Held Shear Vane Test, NZGS, August 2001					1							
LandTech Consulting Ltd. (Christchurch): Unit 6, 31 Carlyle Street, Sydenham Phone: (03) 390 1371 Email: info@landtech.nz	Г			LandTech Consulting Ltd. (Christohurch): Unit 6, 21 Cadula Streat, Sudanham	Phor	ne. (na	390 1371	Email: info@	Mandtoch sa	,		

LandTech Consulting Ltd. (Christchurch): Unit 6, 31 Carlyle Street, Sydenham LandTech Consulting Ltd. (Auckland): 17 Nils Andersen Road, Whenuapai

Phone: (03) 390 1371 Phone: (09) 930 9334 Email: info@landtech.nz Website: www.landtech.nz

Address: 139 Levi Road, Rolleston

Test Pit No. TP04

Sheet No. 1 of 1

Drill Type: Drilled By: 6T Hydraulic Excavator BM Contracting Logged By: Shear Vane No: Project No: LTC20264 M Gunn NZTM2000 E1552364 N5171882 Coordinates: 2255 Date Started: 21-Sep-20 Ground Conditions: Calibration Factor: 1.333 Near level, grass Date Finished: 21-Sep-20 Groundwater Level (m): Not Encountered (21-Sep-30) Calibration Date: 16-Mar-20

Date	Finish	ned:	21-Sep-20 Groundwater Level (m): Not Encour	tered	(21-Se	ep-30)	Calibration E)ate:		16-N	Mar-2
hy	()	Bo		Groundwater Level (m)	<u> </u>		In-situ Fie	eld Testing			
Stratigraphy	Depth (m)	Graphic Log	Soil description in accordance with Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes, NZ Geotechnical Society Inc.,	ier Le	Depth (m)	Shear Strength (kPa)		Dynamic Cor			
Strati	Dep	Grap	2005	idwai	Dep	Peak:	Ê	Count		Blow Coul 00mm	nt /
٠,				roun		Remoulded:	Depth (m)	S ×			
		^ ^				150 20		Blow	0 5	10 15	20
=		(\times)	SILT, some fine sand, dark brown, stiff, moist, non-plastic, trace organics and rootlets [TOPSOIL]		<u> </u>		-0.1	7			
T. SOIL		$\langle \rangle \langle \rangle$	[, 2, 2, 2, 2]		_		-0.2	5			
		$\times \times$			_	187+	-0.3	4	1 4		
		× × × × × × × ×	Fine sandy SILT, yellowish light brown, stiff, moist, non-plastic [ALLUVIAL DEPOSITS / LOESS]		l _		-0.4	3			
	0.5	× × × ×			0.5		-0.5	3			
		× × × × × × × ×			_		-0.6	3	11 4		
ESS		^ ^ ^ ^ ^ ^			_		-0.7	3	∥ ↓l		
7.		× × × ×			_		-0.8	2			
SILS	_	× × × × × × × ×			_	-	-0.9	3	11 }		
EPO	1.0	× × × ×			1.0		-1.0	3	∥ → —		
ALLUVIAL DEPOSITS / LOESS		× × × ×		<u>(</u>	l —		-1.1	3	$\mathbb{I} \setminus \mathbb{I}$		
100	_	* * * * *	, ,		l _		-1.2	4			
Ĭ		× × × ×		21-S	l —		-1.3	3	∥ {		
		× × × ×		Not Encountered (21-Sep-20)	l —		-1.4	5			
	1.5	× × ×		onnte	1.5		-1.5	14			
	_	× × ×	Fine to access conductubly sounded CDAVEL mines silt because dense maint	Enc	_		-1.6	25+	1		
	_		Fine to coarse sandy, sub rounded GRAVEL, minor silt, brown, dense, moist [RIVER DEPOSITS]	Not	_		-1.7		1		
	_	/4V Y			_		-1.8		1		
0	_				_		-1.9		1		
5	2.0				2.0		-2.0				_
niven Derosii s	_	/YX			_		-2.1		1		
ב	_		trace subrounded to round bouders, wet		-	-	-2.2		1		
Ī	_		adde subjectified to found bodders, wet		_	-	-2.3				
	_				-	-	-2.4 -2.5		1		
	2.5				2.5		-2.6				-
	_	7-478	End of Test Pit 2.6m	ł	-	-	-2.7		1		
	_		[TARGET DEPTH]		l –	-	-2.8		1		
	_				-		-2.9		1		
	3.0				3.0	•	-3.0		1		
	3.0				3.0		-3.1				-
	_				-		-3.2		1		
	_				l –		-3.3		1		
	_				l –		-3.4		1		
	3.5				3.5		-3.5		1		
							-3.6		4		
				1	_]	-3.7				
				1	l .]	-3.8				
]	-3.9		4		
	4.0				4.0		-4.0				
				1			-4.1				
				1]	-4.2				
					l _]	-4.3		4		
					l _	[-4.4		4		
	4.5			1	4.5		-4.5			$\perp \perp \downarrow$	
				1	l _		-4.6				
					l _		-4.7				
					l _	[-4.8		4		
					l _		-4.9		4		
	5.0			L	5.0		-5.0				
						In-situ field testing in accordance with Scala Penetrometer Testing: NZS 44			e Penetrometer		
				1		Shear Vane Testing: Guideline for Ha					
_			LandTook Conculting Ltd. (Christoburgh): Unit 6, 24 Cadula Charat. Codashar	Dr-	20: /00	2) 300 1371	Empile into C	alandtach	7		
			LandTech Consulting Ltd. (Christchurch): Unit 6, 31 Carlyle Street, Sydenham	Pho	ie: (03	3) 390 1371	Email: info@	ianatech.nzبناط	<u> </u>		

LandTech Consulting Ltd. (Christchurch): Unit 6, 31 Carlyle Street, Sydenham LandTech Consulting Ltd. (Auckland): 17 Nils Andersen Road, Whenuapai

Phone: (03) 390 1371 Phone: (09) 930 9334 Email: info@landtech.nz Website: www.landtech.nz

Address: 139 Levi Road, Rolleston

Test Pit No. TP05

Sheet No. 1 of 1

Drill Type: Drilled By: 6T Hydraulic Excavator BM Contracting Logged By: Shear Vane No: Project No: LTC20264 M Gunr NZTM2000 E1551650 N5172615 Coordinates: 2255 Date Started: 21-Sep-20 Ground Conditions: Calibration Factor: 1.333 Near level, grass Date Finished: 21-Sep-20 Groundwater Level (m): Not Encountered (21-Sep-30) Calibration Date: 16-Mar-20

Date	FINISH	eu.	21-Sep-20 Groundwater Level (III): Not Encoun	tereu	(21-36	:p-30)	Cambration	Jale.	16-101	ar-20
^		0		Groundwater Level (m)		In-situ Field Testing				
Stratigraphy	Depth (m)	Graphic Log	Soil description in accordance with Guideline for the Field Classification and	er Lev	Depth (m)	Shear Strength (kPa)		Dynamic Con	e Penetrometer	
tratig	Depth	iraph	Description of Soil and Rock for Engineering Purposes, NZ Geotechnical Society Inc., 2005	dwate	Dept				Scala Blow Count 100mm	t /
S		9		rounc		Peak:	Depth (m)	Blow Count	TOOMIN	
				Ō		150 20	<u> </u>	Blow	0 5 10 15	20
T. SOIL		$\langle \rangle \langle \rangle$	SILT, some fine sand, dark brown, stiff, moist, non-plastic, trace organics and rootlets [TOPSOIL]				-0.1	5		
⊢.		$\times \times$					-0.2	7		
		× × × × × × × ×	Fine sandy SILT, yellowish light brown, stiff, moist, non-plastic [ALLUVIAL DEPOSITS / LOESS]				-0.3	5		
		× × × ×	Preservate Ben Gonto, EGEGG		_		-0.4	5		
SS	0.5	× × × ×			0.5	187+ UTP	-0.5	3		
LOE		× × × ×			_		-0.6	3		
ALLUVIAL DEPOSITS / LOESS	_	× × × ×			_		-0.7	3	•	
POSI	_	* * * * * * * * *			_		-0.8	3		
8	_	× × × ×			_		-0.9	2	II ∢	
JVIA	1.0	× × × ×			1.0		-1.0	3		-
ALLI	_	~			_		-1.1	3		
1	-	× × × ×		50)	-		-1.2	6 7	1	
1	-	× × × ×		Sep-2	_		-1.3 -1.4	25+	•	
-		7 7 Y	Fine to coarse sandy, sub rounded GRAVEL, minor silt, brown, dense, moist	(21-5	l <u> </u>		-1.4 -1.5	20+		
	1.5	15	[RIVER DEPOSITS]	Not Encountered (21-Sep-20)	1.5		-1.6			+
	_	<i>Q</i> (`		unoo	_		-1.7			
	_		trace to minor subrounded boulders	ot En	_		-1.8			
	-		trace to filmor subrounded boulders	Ž	_		-1.9			
	2.0				2.0		-2.0			
STI	2.0				2.0		-2.1			
RIVER DEPOSITS	_				_		-2.2			
R DE							-2.3			
RIVE		29 Y					-2.4			
	2.5				2.5		-2.5			
							-2.6			
							-2.7			
					_		-2.8			
	_				_		-2.9			
	3.0	7 V X	End of Test Pit 3.0m		3.0		-3.0			
	_		[TARGET DEPTH]		_		-3.1			
	_		[IANGET DEF III]		_		-3.2			
	_				_		-3.3			
	_				_		-3.4 -3.5			
	3.5				3.5		-3.6			\dashv
					-		-3.7			
					_		-3.8			
					l —		-3.9			
	4.0				4.0		-4.0			
				Ī			-4.1			
1							-4.2			
1							-4.3			
				Ī			-4.4			
	4.5				4.5		-4.5			4
	_			Ī	l _		-4.6			
					_		-4.7			
				Ī	_		-4.8			
	$\mid - \mid$				-		-4.9			
\vdash	5.0			H	5.0	In-situ field testing in accordance with	-5.0 the following Star	ndards:		
						Scala Penetrometer Testing: NZS 44			Penetrometer	
						Shear Vane Testing: Guideline for Ha	and Held Shear Va	ne Test, NZGS, A	ugust 2001	
			LandTech Consulting Ltd. (Christchurch): Unit 6, 31 Carlyle Street, Sydenham	Phor	ne: (03) 390 1371	Email: info@	Plandtech.nz		

LandTech Consulting Ltd. (Christchurch): Unit 6, 31 Carlyle Street, Sydenham LandTech Consulting Ltd. (Auckland): 17 Nils Andersen Road, Whenuapai

Phone: (03) 390 1371 Phone: (09) 930 9334 Email: info@landtech.nz Website: www.landtech.nz

Address: 139 Levi Road, Rolleston

Test Pit No.

Sheet No. 1 of 1

TP06

Drill Type: Drilled By: 6T Hydraulic Excavator BM Contracting Logged By: Shear Vane No: Project No: LTC20264 M Gunn NZTM2000 E1551614 N5172361 Coordinates: 2255 Date Started: 21-Sep-20 Ground Conditions: Calibration Factor: 1.333 Near level, grass Date Finished: 21-Sep-20 Groundwater Level (m): Not Encountered (21-Sep-30) Calibration Date: 16-Mar-20

SILT, some fine sand, dark brown, stiff, moist, non-plastic, trace organics and rootlets [TOPSOIL] -0.1 2 -0.2 2 -0.3 3 3 -0.5 -0.5 3 -0.5 3 -0.5 3 -0.5 3 -0.6 2 -0.7 3 -0.6 2 -0.7 3 -0.8 2 -0.9 3 -1.1 3 -1.2 4 -1.3 9 -1.4 -1.5 -1.5 [RIVER DEPOSITS] Fine to coarse sandy, sub rounded GRAVEL, minor silt, brown, dense, moist [RIVER DEPOSITS] -1.6 -1.6 -1.6 -1.6 -1.7 -1.8 -1.9 -1.15	Date Finished:		ied:	21-Sep-20 Groundwater Level (m): Not Encour	tered	(21-S	-30) Calibration Date: 16-Mar-2					
Sult, come time saint, dash brown, stiff, most, non-plastic, base organics and widels; [ToPSQK] 0.1 2 0.2 2 0.3 3 0.4 3 0.5	Stratigraphy	(m)	c Log		ır Level (m)	(m)	Shear Strength (kPa)					
Sult, come time saint, dash brown, stiff, most, non-plastic, base organics and widels; [ToPSQK] 0.1 2 0.2 2 0.3 3 0.4 3 0.5	Stratig	Depth	3raphi	Description of Soil and Hock for Engineering Purposes, NZ Geotechnical Society Inc., 2005	dwate	Depth				Scala	Blow C	
SLT, from the sand, duck brown, etit, most, non-plastic noise (FTPS)(III) Fine span) SLT, light brown, allf, most, non-plastic noise (FTPS)(III) ALLUMA: DEPOSITS I LOESS) ALLUMA: DEPOSITS I LOESS) ALLUMA: DEPOSITS I LOESS) Brief to coarse sendy, sub-rounded GSAVE, minor silt, brown, dense, most get to the plant of the plant					Grour		Remoulded:	Depth	ow Co			
D. ALLUVIAL DEPOSITS / LOESS) D. A. B.	T. SOIL			rootlets [TOPSOIL]		_	107	-0.1 -0.2 -0.3	2 2 3	Ţ		
20	ALLUVIAL DEPOSITS / LOESS	1.0	<pre></pre>	[ALLUVIAL DEPOSITS / LOESS]	ered (21-Sep-20)	1.0		-0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.1 -1.2 -1.3	3 2 3 2 3 4 3 4 9			
3.0 3.0 3.1 3.2 3.3 3.4 3.5	RIVER DEPOSITS	2.0			Not Encounte	2.0		-1.6 -1.7 -1.8 -1.9 -2.0 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7				
Scala Penetrometer Testing: NZS 4402:1988, Test 6.5.2, Dynamic Cone Penetrometer Shear Vane Testing: Guideline for Hand Held Shear Vane Test, NZGS, August 2001	-	3.5				3.5	In-situ field testino in accordance will	-3.0 -3.1 -3.2 -3.3 -3.4 -3.5 -3.6 -3.7 -3.8 -3.9 -4.0 -4.1 -4.2 -4.3 -4.4 -4.5 -4.6 -4.7 -4.8 -4.9 -5.0	ards:			
Shear Vane Testing: Guideline for Hand Held Shear Vane Test, NZGS, August 2001	1	J.U				5.0		the following Stand				
				<u> </u>		1						

APPENDIX D Soakage Test Results

Client: Four Stars Development Limited
Project: Proposed Land Use Change
Address: Lincoln Rolleston Road, Rolleston

Test Type: On-site soakage test Project No: LTC20264

Tested By: L Challies Test Date: 21-Sep-20

Test ID: TP05/SP01

Coordinates: NZTM2000 E1551650 N5172615

Groundwater level: Not Encountered

Method: In accorandance with W1: Falling-head

percolation Test of the Auckland

soakage design manual

Test ID:

Coordinates:

Groundwater level:

Method:

Test Pit Dimensions

2 m length

1 m wide

1.60 m equivalent diameter

1) Test Details

1) Test Details											
Time	Time	Depth	Soak Rate								
(Sec)	(min)	(m)	(m/min)								
0	0.00	0.5	-								
250	4.17	0.4	0.024								
1590	26.50	0.3	0.004								
2360	39.33	0.2	0.008								

2) Calculate Minimum Gradient

0.01 m/min 368

3) Calculate percolation rate

10 L/m2/min 587 L/m2/hr

mm/h