Upper Selwyn Huts Climate Assessment

Andrew Dark
Aqualinc Research Ltd
7th December 2024

aqualinc

Presentation outline

- What did the assessment cover?
 - How it relates to district-scale climate assessments
- Lake Levels method and results.
- Groundwater method and results.

What did the assessment cover?

- Previous district-scale assessments
 - 2016, 2020, 2023
 - Identified relevant issues but limited detail due to district-wide focus
- Te Waihora / Lake Ellesmere water levels
 - Sea level rise
- Shallow groundwater and groundwater flooding
 - Future climate
 - Sea level rise
- River flooding was not specifically in scope.

Te Waihora / Lake Ellesmere levels

- Levels are in the 0.4 1.2 m range 95% of the time.
- June / July 2013
 - Lake level reached 1.8 m above sea level
 - Due to high rainfall and inability to open the lake outlet
- Key assumption:
 - If this combination of events occurred again with a higher sea level, the lake level will end up higher.

Sea level rise projections

- NZ SeaRise project (https://www.searise.nz)
 - Location-specific sea level rise projections for the whole NZ coast.
 - Includes vertical land movement
 - A range of projections:
 - Different emissions pathways
 - Confidence intervals (we've considered the most likely range)

Scenario	Year	Percentile		
		17 th	50 th	83 rd
SSP2-4.5 + VLM (medium confidence)	2050	0.10 m	0.26 m	0.42 m
	2100	0.32 m	0.64 m	0.98 m
SSP5-8.5 + VLM (medium confidence)	2050	0.14 m	0.29 m	0.46 m
	2100	0.55 m	0.90 m	1.30 m

Mapping method

- 2023 digital elevation model from LiDAR aerial survey
 - Highly accurate ground levels
- Mapped area lower than 1.8 m above sea level
- Added sea level rise and re-mapped:
 - SSP2-4.5 and SSP5-8.5
 - 2050 and 2100

Mapping Results

- Inundation extent for SSP2-4.5
- Mid-century:
 - Days Road access
- Late-century:
 - More widespread flooding

Mapping Results

- Inundation extent for SSP5-8.5
- More widespread flooding predicted

Mapping Results

 Water depth with 2050 sea level rise

Te Waihora levels: key messages

- A 2013-type event with higher sea levels will result in a greater extent and depth of flooding.
- Issues with access to Upper Selwyn Huts in scenarios where the huts themselves are not flooded.
- Climate change could result in worse impacts than those shown.
- Questions?

Groundwater

- Shallow groundwater as a hazard:
 - Groundwater flooding: can be longer-lasting than river floods
 - Damage to road materials and building foundations
 - Health issues from rising damp
 - Damage to crops and other plants

- Numerical simulation of the groundwater system
 - Model developed over 20+ years
 - Local refinement of the model for this project
 - Calibration to measured data, back to 1960
 - Simulation with projected future climate (from NIWA) to 2100

Model calibration to measured data

Model scenarios

- Future climate
 - With and without sea level rise (using SSP5-8.5 median projection)
- Steady-state simulation:
 - Gives averaged water level surfaces good for understanding spatial extent of impacts
- Long-term time-varying simulation:
 - Shows how groundwater levels vary at a point over time

Historical modelled groundwater levels

- Areas where groundwater is within 0.3 m of ground level (on average).
- Note that levels vary over time.
- Areas outside of the shaded zone may also experience groundwater close to the surface at times.

Modelled changes to average groundwater levels

aqualinc

 Changes to the average result in changes to extremes: very high groundwater levels will occur more frequently, for longer.

Modelled groundwater levels over time

- Simulation based on modelled historic climate gives lower levels overall than simulation with measured past climate (calibration scenario).
- Changes between scenarios are the key result

Modelled groundwater levels over time: historic period

- Slight reduction in water levels without sea level rise.
- Sea level rise results in overall rise: increased frequency and duration of high groundwater levels.

Groundwater: key results

- Shallow groundwater on the lower plains is tightly linked to Te Waihora / Lake Ellesmere levels.
- Higher lake levels as a result of sea level rise will result in higher groundwater levels:
 - Higher frequency of very high groundwater levels
 - Longer duration of groundwater at very high levels
- Greater potential for hazard and nuisance impacts:
 - Groundwater flooding
 - Damage to infrastructure and buildings
 - Health impacts
- Questions?

